@AEROSPAGE

Assuring Space Mission Success

Software Schedules:
Nailing Jello to the Wall

Marghi Hopkins

NASA Project Management Challenge 2009

o ATMOSe,,
> %o
2

© 2009 The Aerospace Corporation

Why Are We Having This Conversation?

Software schedules - still risky after all these years

* Notwithstanding years of
— Lessons learned
— Process improvement
— Metrics

* We still routinely face

— Large uncertainties in schedule
estimation

— Problematic schedule tracking
* |s there any help?

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 2

Presentation Topics

¢ Effects and trends in software
scheduling

®* The system development lifecycle
®* The software subsystem

* Symptoms and causes of scheduling
problems

® Several approaches to developing
and maintaining accurate software
schedules

Marghi.Hopkins@nasa.gov
Civil and Commercial Operations 3

@AEROSPACE

Twenty Years And 40+ Missions:

Summary Of Cost/Schedule Study Results”
Effects of scheduling overruns

10% schedule growth corresponds to 12% cost growth

* Assumptions and allotments for schedule growth
— General rule of thumb is 1 month per year
—NASA/JPL guidance is 1.8 months per year
— Four of six telescope missions exceeded NASA/JPL guidance
— Five of six telescope missions exceeded general rule of thumb

Reliability of estimates improves over the life cycle but still
contains large uncertainty

® Greatest growth occurs in Phase D during Integration and Test

Short schedules and increased complexity invite failure
— Failed and impaired missions had short schedules or a combination of
short schedules and high complexity

*Bearden, Perspectives on NASA Mission Cost and Schedule Performance Trends, Presentation
at GSFC Symposium, 3 June 2008 [http://ses.gsfc.nasa.gov/SE_Seminar_2008.htm]

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 4

Trends: More Complex, More Complicated

* Complex
— 1 : composed of two or more parts
— 2 : difficult to analyze, understand, or explain

* Complicated
— 1 : consisting of parts intricately combined
— 2: hard to separate, analyze, or solve

® Classical Systems Engineering assumes a closed
system: decomposable, linear, predictable

* Newer problems tend to reside in open systems that
exhibit predictable patterns of behavior, unpredictable
patterns of behavior, or a combination of both

Marghi.Hopkins@nasa.gov @ AEROSPAGE

Civil and Commercial Operations 5

The Big Picture

SRR PDR CDR SIR TRR
4 4 1 . 4
System System System System In?é/s:z:?on S;I/_?_terrtl.
Requirements | Architecture |Detailed Design| Implementation grati RUEl cation
and Testing Testing

Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

SRR — System Requirements Review
PDR — Preliminary Design Review
CDR - Critical Design Review
SIR — System Integration Review
TRR — Test Readiness Review

@AEROSPACE

The Section On Which We Are Focused
The software subsystem

SRR PDR CDR SIR TRR
1 1 1 ! 1

System System
Integration | Qualification
and Testing Testing

System System System System
Requirements | Architecture Detailed Design Implementation

Hardware Subsystem

Software Subsystem
NS

= = PDR CDR =

Software
Requirements

Analysis Architecture Detailed Softwane Integration Software

Software Design

IR EmENEe and Test Qualification

Testing

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 7

Looking Closer
The software subsystem

System PDR System CDR System SIR

8 i i

System Detailed Design System Implementation

S0iiliele Software Design

Requirements
A EWSTS Architecture Detailed

Software

: Integration Software
Implementation

And Test Qualification
Testing

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 8

Establishing A Schedule And Milestones

15t Quarter 2nd Quarter Srd Quarter 4th Guarter 1st Quarter 2nd Quarter Jrd Cuarter 4th Quarter 1zt Quarter 2nd

c | Task Mame Jan [Feb | Mar [Apr [May [Jun [Jul [aog [Sep | Oct [Mov [Dec [Jan [Feb [Mar [Apr [May [Jun [ol [2ug [Sep [Oct [Mov [Dec | Jan [Feb [Mar [Apr
1 System POR

2 Requiirements

3 SRR

4 Architecture

5 PDR

E Detailed Design

7 CDR

g Code and Unit Test

] SR

10 Integration & Test

11 TRR

12 Softweare Gualification Test

13 Acceptance

System SRR PDR CDR SIR TRR
PDR
Acceptance

| R

Marghi.Hopkins@ .
Ci?/?lga;d %%r;nnsﬁer::];?%gg\r/ations 9 @ AEROSPACE

Tracking The Schedule

In a perfect world:

PROGRESS >
System SRR PDR CDR SIR TRR ﬁ
PDR Acceptance
In our world:

— TN O DN T

System SRR PDR CDR SIR TRR I .

PDR Acceptance

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 10

Typical Software Scheduling And Tracking
Problems

* The software schedule seems reasonable but keeps
changing
— The project keeps receiving new requirements
— Coding is finished, but integration and test is taking more time
than expected
* The software schedule is not reasonable and keeps

slipping
— COTS and reused code didn’t reduce the schedule as much
as predicted

® Tracking the schedule is difficult
— The code is 90% done

— The software status hasn’t changed since the last reporting
period

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 11

Software Scheduling And Tracking Problems

Well-known causes

® Poor estimates,
— lll-defined requirements
— Changing requirements
— Failure to understand the problem
— Inexperienced team
— Lack of metrics
— Poor or inappropriate use of metrics
— Lack of review by technical people

® Poor tracking
— No tracking is done
— Inaccurate status of tasks
— Overly optimistic
— Improper use of Earned Value Measurement

Marghi.Hopkins@nasa.gov
Civil and Commercial Operations 12

@AEROSPACE

Software Scheduling And Tracking Problems

Less well-recognized causes

* The software schedule is not properly synchronized
with the system schedule

— A software schedule cannot realistically begin until after the
System Preliminary Design Review (PDR), when the Review
Board approves allocation of functionality to hardware and
software systems

— Starting the software schedule before System PDR generally
results in slips, rework, and rescheduling
* Failure to include the requirements-design-implement-
test cycle at even the lowest levels, including bug fixes
and requested changes

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 13

Software Scheduling And Tracking Problems

Personal Experiences

* |nadequate or no time in the schedule for the
requirements-design-implement-test cycle, especially
during integration and test

— Little or no unit testing was done
— Bugs were not correctly fixed or new bugs were installed
because requirements and design were not reviewed

® Forward progress reverses when problems must be
fixed, but tracking does not include options for
accurately conveying project status

— No consideration of “are we going in the right direction?”

— When 100 lines of code are counted as complete, does
anybody ever subtract that 100 lines when the module falls in
Integration? No.

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 14

Using Technology To Enhance Project
Scheduling

* Evidence Based Scheduling”to get a confidence distribution curve
showing you will meet the target completion date
— Maximum 16 hour tasks — this forces you to do the detailed design
— Capture individual project member’s elapsed time for each task

— Calculate estimate/actual ratios to determine how fast the task was
done relative to the estimate; perform a Monte Carlo simulation for
each project member using data from the past 6 months

— Calculate each project member’s probability of completing assigned
tasks on a given date; the developer who finishes last determines
when the team is done

® Using this approach produces a realistic project schedule

*Spolsky, Evidence Based Scheduling, Article on the Joel on Software Homepage, 26
October 2007 [http://www.joelonsoftware.com]

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 15

Benefits Of Evidence Based Scheduling

* Significantly enhanced accuracy

* Empirical evidence that allows you to understand
project status in concrete terms

* Real-time performance data that forces you to prioritize
and help control scope creep
— Given a bunch of blocks and a box that won’t hold them, you
must get a bigger box or discard some of the blocks.
® Realistic schedules that permit active project
management to meet milestones, not just post-mortem
analysis

® Once procedures are set up, they can be quickly and
easily deployed in later phases or other projects

Marghi.Hopkins@nasa.gov @ AEROSPAGE

Civil and Commercial Operations 16

Non-Technological Enhancements To Project
Scheduling

® Track progress using something other than, or in
addition to, lines of code
— Number of requirements met
— Number of Function Points implemented
— Number of test cases successfully executed

— Number of Use Cases that can be executed in a build
* Not difficult to calculate

® Use Cases are almost universally used now for requirements
analysis and design, so you use existing information

® Helps enforce using the requirements-design-implementation-test
cycle at all levels: system, CSCI, CSC, and unit
® Functional, rather than quantitative status reports
provide a more reliable view of progress than the sum of

number.of lines.of code generated
Marghi.Hopkins@nasa.gov @ AEROSPAGE

Civil and Commercial Operations 17

In Summary

* The software schedule should begin after system PDR,
not before

* Provide sufficient time for the requirements-design-
Implement-test cycle at all levels

* Project Management should include metrics that
provide a realistic view of project status
— Functional milestones, not amount of code

— Current loads on all team members—and disparities between
them

— Specific identification of open issues and cost overruns
— Dynamic timelines that show the impact of a slipped schedule

Marghi.Hopkins@nasa.gov @ AEROSPACE

Civil and Commercial Operations 18

